Simulation for American Options: Regression Now or Regression Later?

نویسندگان

  • Paul Glasserman
  • Bin Yu
چکیده

Pricing American options requires solving an optimal stopping problem and therefore presents a challenge for simulation. This article investigates connections between a weighted Monte Carlo technique and regression-based methods for this problem. The weighted Monte Carlo technique is shown to be equivalent to a least-squares method in which option values are regressed at a later time than in other regression-based methods. This “regression later” technique is shown to have two attractive features: under appropriate conditions, (i) it results in less-dispersed estimates, and (ii) it provides a dual estimate (an upper bound) with modest additional effort. These features result, more generally, from using martingale regressors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Dynamic Look-ahead Monte Carlo Algorithm for Pricing American Options

Pricing of American options can be achieved by solving optimal stopping problems. This in turn can be done by computing so-called continuation values, which we represent as regression functions defined by the aid of a cash flow for the next few time periods. We use Monte Carlo to generate data and apply nonparametric least squares regression estimates to estimate the continuation values from th...

متن کامل

Inference by Genetic Programming of an analytical expression for the Optimal Exercise Threshold of an asset that follows a Mean Reversion Process

The American option evaluation is a relatively complex and expensive process due to commonly used methodologies as Finite Differences, Dynamic Programming, Monte Carlo Simulation, etc. needs high computational performance. Besides that, the complexity needed to calculate the option value and the optimal threshold increases when the price of underlying asset follows the Mean Reversion Stochastic...

متن کامل

On the existence of an optimal regression complexity in the Least-Squares Monte Carlo (LSM) framework for options pricing

In this paper, we illustrate how to value American-style options using the Least-Squares Monte Carlo (LSM) approach proposed by Longstaff and Schwartz (2001) and investigate whether there exists an optimal regression complexity in the LSM framework for options pricing. In particular, we use the smoothing spline in the regression step, which allows us to control the regression complexity on a co...

متن کامل

Monte Carlo Pricing of American Options Using Nonparametric Regression

This paper provides an introduction to Monte Carlo algorithms for pricing American options written on multiple assets, with special emphasis on methods that can be applied in a multi-dimensional setting. Simulated paths can be used to estimate by nonparametric regression the continuation value of the option or the optimal exercise policy and the value functions can then be computed by backward ...

متن کامل

A Dynamic Look - Ahead Monte Carlo Algorithm for Pricing Bermudan Options

Under the assumption of no-arbitrage, the pricing of American and Bermudan options can be casted into optimal stopping problems. We propose a new adaptive simulation based algorithm for the numerical solution of optimal stopping problems in discrete time. Our approach is to recursively compute the so-called continuation values. They are defined as regression functions of the cash flow, which wo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002